Skip to main content
Version: 0.52

Transactions

Synopsis

Transactions are objects created by end-users to trigger state changes in the application.

Transactions

Transactions are comprised of metadata held in contexts and sdk.Msgs that trigger state changes within a module through the module's Protobuf Msg service.

When users want to interact with an application and make state changes (e.g. sending coins), they create transactions. Each of a transaction's sdk.Msg must be signed using the private key associated with the appropriate account(s), before the transaction is broadcasted to the network. A transaction must then be included in a block, validated, and approved by the network through the consensus process. To read more about the lifecycle of a transaction, click here.

Type Definition

Transaction objects are Cosmos SDK types that implement the Tx interface

https://github.com/cosmos/cosmos-sdk/blob/v0.52.0-beta.2/types/tx_msg.go#L53-L66

It contains the following methods:

  • GetMsgs: unwraps the transaction and returns a list of contained sdk.Msgs - one transaction may have one or multiple messages, which are defined by module developers.
  • ValidateBasic: lightweight, stateless checks used by ABCI messages CheckTx and RunTx to make sure transactions are not invalid. For example, the auth module's ValidateBasic function checks that its transactions are signed by the correct number of signers and that the fees do not exceed the user's maximum. When runTx is checking a transaction created from the auth module, it first runs ValidateBasic on each message, then runs the auth module AnteHandler which calls ValidateBasic for the transaction itself.
  • Hash(): returns the unique identifier for the Tx.
  • GetMessages: returns the list of sdk.Msgs contained in the transaction.
  • GetSenders: returns the addresses of the signers who signed the transaction.
  • GetGasLimit: returns the gas limit for the transaction. Returns math.MaxUint64 for transactions with unlimited gas.
  • Bytes: returns the encoded bytes of the transaction. This is typically cached after the first decoding of the transaction.
note

This function is different from the deprecated sdk.Msg ValidateBasic methods, which was performing basic validity checks on messages only.

As a developer, you should rarely manipulate Tx directly, as Tx is really an intermediate type used for transaction generation. Instead, developers should prefer the TxBuilder interface, which you can learn more about below.

Signing Transactions

Every message in a transaction must be signed by the addresses specified by its GetSigners. The Cosmos SDK currently allows signing transactions in two different ways.

SIGN_MODE_DIRECT (preferred)

The most used implementation of the Tx interface is the Protobuf Tx message, which is used in SIGN_MODE_DIRECT:

https://github.com/cosmos/cosmos-sdk/blob/v0.52.0-beta.2/proto/cosmos/tx/v1beta1/tx.proto#L15-L28

Because Protobuf serialization is not deterministic, the Cosmos SDK uses an additional TxRaw type to denote the pinned bytes over which a transaction is signed. Any user can generate a valid body and auth_info for a transaction, and serialize these two messages using Protobuf. TxRaw then pins the user's exact binary representation of body and auth_info, called respectively body_bytes and auth_info_bytes. The document that is signed by all signers of the transaction is SignDoc (deterministically serialized using ADR-027):

https://github.com/cosmos/cosmos-sdk/blob/v0.52.0-beta.2/proto/cosmos/tx/v1beta1/tx.proto#L50-L67

Once signed by all signers, the body_bytes, auth_info_bytes and signatures are gathered into TxRaw, whose serialized bytes are broadcasted over the network.

SIGN_MODE_LEGACY_AMINO_JSON

The legacy implementation of the Tx interface is the StdTx struct from x/auth:

https://github.com/cosmos/cosmos-sdk/blob/v0.52.0-beta.2/x/auth/migrations/legacytx/stdtx.go#L81-L91

The document signed by all signers is StdSignDoc:

https://github.com/cosmos/cosmos-sdk/blob/v0.52.0-beta.2/x/auth/migrations/legacytx/stdsign.go#L32-L45

which is encoded into bytes using Amino JSON. Once all signatures are gathered into StdTx, StdTx is serialized using Amino JSON, and these bytes are broadcasted over the network.

Other Sign Modes

The Cosmos SDK also provides a couple of other sign modes for particular use cases.

SIGN_MODE_DIRECT_AUX

SIGN_MODE_DIRECT_AUX is a sign mode released in the Cosmos SDK v0.46 which targets transactions with multiple signers. Whereas SIGN_MODE_DIRECT expects each signer to sign over both TxBody and AuthInfo (which includes all other signers' signer infos, i.e. their account sequence, public key and mode info), SIGN_MODE_DIRECT_AUX allows N-1 signers to only sign over TxBody and their own signer info. Moreover, each auxiliary signer (i.e. a signer using SIGN_MODE_DIRECT_AUX) doesn't need to sign over the fees:

https://github.com/cosmos/cosmos-sdk/blob/v0.52.0-beta.2/proto/cosmos/tx/v1beta1/tx.proto#L69-L93

The use case is a multi-signer transaction, where one of the signers is appointed to gather all signatures, broadcast the signature and pay for fees, and the others only care about the transaction body. This generally allows for a better multi-signing UX. If Alice, Bob and Charlie are part of a 3-signer transaction, then Alice and Bob can both use SIGN_MODE_DIRECT_AUX to sign over the TxBody and their own signer info (no need an additional step to gather other signers' ones, like in SIGN_MODE_DIRECT), without specifying a fee in their SignDoc. Charlie can then gather both signatures from Alice and Bob, and create the final transaction by appending a fee. Note that the fee payer of the transaction (in our case Charlie) must sign over the fees, so must use SIGN_MODE_DIRECT or SIGN_MODE_LEGACY_AMINO_JSON.

SIGN_MODE_TEXTUAL

SIGN_MODE_TEXTUAL is a new sign mode for delivering a better signing experience on hardware wallets and it is included in the v0.50 release. In this mode, the signer signs over the human-readable string representation of the transaction (CBOR) and makes all data being displayed easier to read. The data is formatted as screens, and each screen is meant to be displayed in its entirety even on small devices like the Ledger Nano.

There are also expert screens, which will only be displayed if the user has chosen that option in its hardware device. These screens contain things like account number, account sequence and the sign data hash.

Data is formatted using a set of ValueRenderer which the SDK provides defaults for all the known messages and value types. Chain developers can also opt to implement their own ValueRenderer for a type/message if they'd like to display information differently.

If you wish to learn more, please refer to ADR-050.

Custom Sign modes

There is the opportunity to add your own custom sign mode to the Cosmos-SDK. While we can not accept the implementation of the sign mode to the repository, we can accept a pull request to add the custom signmode to the SignMode enum located here

Transaction Process

The process of an end-user sending a transaction is:

  • decide on the messages to put into the transaction,
  • generate the transaction using the Cosmos SDK's TxBuilder,
  • broadcast the transaction using one of the available interfaces.

The next paragraphs will describe each of these components, in this order.

Messages

tip

Module sdk.Msgs are not to be confused with ABCI Messages which define interactions between the CometBFT and application layers.

Messages (or sdk.Msgs) are module-specific objects that trigger state transitions within the scope of the module they belong to. Module developers define the messages for their module by adding methods to the Protobuf Msg service, and also implement the corresponding MsgServer.

Each sdk.Msgs is related to exactly one Protobuf Msg service RPC, defined inside each module's tx.proto file. A SDK app router automatically maps every sdk.Msg to a corresponding RPC. Protobuf generates a MsgServer interface for each module Msg service, and the module developer needs to implement this interface. This design puts more responsibility on module developers, allowing application developers to reuse common functionalities without having to implement state transition logic repetitively.

To learn more about Protobuf Msg services and how to implement MsgServer, click here.

While messages contain the information for state transition logic, a transaction's other metadata and relevant information are stored in the TxBuilder and Context.

Transaction Generation

The TxBuilder interface contains data closely related with the generation of transactions, which an end-user can freely set to generate the desired transaction:

https://github.com/cosmos/cosmos-sdk/blob/v0.52.0-beta.2/client/tx_config.go#L39-L57
  • Msgs, the array of messages included in the transaction.
  • GasLimit, option chosen by the users for how to calculate how much gas they will need to pay.
  • Memo, a note or comment to send with the transaction.
  • FeeAmount, the maximum amount the user is willing to pay in fees.
  • TimeoutHeight, block height until which the transaction is valid.
  • Signatures, the array of signatures from all signers of the transaction.

As there are currently two sign modes for signing transactions, there are also two implementations of TxBuilder:

  • builder for creating transactions for SIGN_MODE_DIRECT,
  • StdTxBuilder for SIGN_MODE_LEGACY_AMINO_JSON.

However, the two implementations of TxBuilder should be hidden away from end-users, as they should prefer using the overarching TxConfig interface:

https://github.com/cosmos/cosmos-sdk/blob/v0.52.0-beta.2/client/tx_config.go#L27-L37

TxConfig is an app-wide configuration for managing transactions. Most importantly, it holds the information about whether to sign each transaction with SIGN_MODE_DIRECT or SIGN_MODE_LEGACY_AMINO_JSON. By calling txBuilder := txConfig.NewTxBuilder(), a new TxBuilder will be created with the appropriate sign mode.

Once TxBuilder is correctly populated with the setters exposed above, TxConfig will also take care of correctly encoding the bytes (again, either using SIGN_MODE_DIRECT or SIGN_MODE_LEGACY_AMINO_JSON). Here's a pseudo-code snippet of how to generate and encode a transaction, using the TxEncoder() method:

txBuilder := txConfig.NewTxBuilder()
txBuilder.SetMsgs(...) // and other setters on txBuilder

bz, err := txConfig.TxEncoder()(txBuilder.GetTx())
// bz are bytes to be broadcasted over the network

Broadcasting the Transaction

Once the transaction bytes are generated, there are currently three ways of broadcasting it.

CLI

Application developers create entry points to the application by creating a command-line interface, gRPC and/or REST interface, typically found in the application's ./cmd folder. These interfaces allow users to interact with the application through command-line.

For the command-line interface, module developers create subcommands to add as children to the application top-level transaction command TxCmd. CLI commands actually bundle all the steps of transaction processing into one simple command: creating messages, generating transactions and broadcasting. For concrete examples, see the Interacting with a Node section. An example transaction made using CLI looks like:

simd tx send $MY_VALIDATOR_ADDRESS $RECIPIENT 1000stake

gRPC

gRPC is the main component for the Cosmos SDK's RPC layer. Its principal usage is in the context of modules' Query services. However, the Cosmos SDK also exposes a few other module-agnostic gRPC services, one of them being the Tx service:

https://github.com/cosmos/cosmos-sdk/blob/v0.52.0-beta.2/proto/cosmos/tx/v1beta1/service.proto

The Tx service exposes a handful of utility functions, such as simulating a transaction or querying a transaction, and also one method to broadcast transactions.

Examples of broadcasting and simulating a transaction are shown here.

REST

Each gRPC method has its corresponding REST endpoint, generated using gRPC-gateway. Therefore, instead of using gRPC, you can also use HTTP to broadcast the same transaction, on the POST /cosmos/tx/v1beta1/txs endpoint.

An example can be seen here

CometBFT RPC

The three methods presented above are actually higher abstractions over the CometBFT RPC /broadcast_tx_{async,sync,commit} endpoints, documented here. This means that you can use the CometBFT RPC endpoints directly to broadcast the transaction, if you wish so.